If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-15x-11=0
a = 14; b = -15; c = -11;
Δ = b2-4ac
Δ = -152-4·14·(-11)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-29}{2*14}=\frac{-14}{28} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+29}{2*14}=\frac{44}{28} =1+4/7 $
| 40=−4x | | 2(3x-12)-5x=-3x(x-12) | | 34=3m+9 | | 6/y=17/5 | | 7/22=x/110 | | 3x+18+5x+6=180 | | 2a+14=3a+6 | | -5x=-10/9 | | 12+3x=4x+9 | | 12-2x=16+x | | 25/x=10/6 | | 4y=18=42 | | 7v/3=-14 | | -7x+5=12x+3 | | 25/a=10/6 | | (x/(5x+16))=0 | | 9=3v-12 | | 8z-6=82 | | x^2-4x-23=-9 | | x^2=–169. | | m+1/33=4m-2/11 | | 7x-5=-12x+3 | | x2=–169 | | x2=–169. | | 7r^2-18=r | | 34m=4m+9 | | a=5=12 | | 20=u/4-16 | | 9u+9=99 | | x+(x+5)+(x+4)=27 | | 21-3t=15 | | -1/4(x-11)=4 |